Appendix (Additional assessments outside the scope of SCS108) ## Antenna Parameters with Head TSL | - 3.7 jΩ | |----------| | .5 dB | | .5 UB | | _ | ## Antenna Parameters with Body TSL | Landana transformed to feed point | 46.4 Ω - 2.1 jΩ | |--------------------------------------|-----------------| | Impedance, transformed to feed point | 07 O JD | | Return Loss | - 27.2 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.222 ns | |----------------------------------|----------| | Electrical Delay (one alreation) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured by | June 03, 2014 | | Manufactured on | June 05, 2014 | Certificate No: D1750V2-1123_Jul14 #### **DASY5 Validation Report for Head TSL** Date: 08.07.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1123 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.37 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.23, 5.23, 5.23); Calibrated: 30.12.2013; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.04.2014 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.81 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 8.81 W/kg; SAR(10 g) = 4.66 W/kg Maximum value of SAR (measured) = 11.0 W/kg 0 dB = 11.0 W/kg = 10.41 dBW/kg ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 08.07.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1123 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.49$ S/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.89, 4.89, 4.89); Calibrated: 30.12.2013; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.04.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.57 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 15.8 W/kg SAR(1 g) = 9.13 W/kg; SAR(10 g) = 4.9 W/kg Maximum value of SAR (measured) = 11.5 W/kg 0 dB = 11.5 W/kg = 10.61 dBW/kg ## Impedance Measurement Plot for Body TSL ### Justification of the extended calibration of Dipole D1750V2 SN: 1123 Per KDB 865664, we have Measured the Impedance and Return Loss as below, and the return loss is <-20dB, with 20% of prior calibration; the real or imaginary parts of the impedance is with 5 ohm of prior calibration. Therefore the verification result should support extended calibration. | Dipole 1750 Head TST | Target Value | Measured Value | Difference | |--|--------------|--|------------------| | Impedance transformed to feed point | 50.0Ω-3.7jΩ | 50.79Ω-3.31jΩ | R=0.79Ω, X=0.39Ω | | Return Loss | -28.5dB | -27.81dB | 2.42% | | Dipole 1750 Body TST | Target Value | Measured Value | Difference | | Impedance transformed to feed point | 46.4Ω-2.1jΩ | 48.74Ω-1.87jΩ | R=2.34Ω, X=0.23Ω | | Return Loss | -27.2dB | -25.39dB | 6.65% | | Measured Date | 2014-07-08 | 2016-07-05 | | | Impedance Tes | st-Head | Return Loss T | est-Head | | 1.Active Offrace 2 Personus - 140(Analysis 5) and 51 state 1772 511 Smith (R+jx) scale 1.000u [F1] 51 1.7500000 GHz 50.792 Ω -3.3079 Ω 22-493 pF | | 1Active C/frace 2 Resource 3 Stm.lus 4 M/r/Analysis 5 Instr State 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | Importance Too | 4 Dadu | -60.00 Potential Local T | inst Dodg | | Impedance Tes 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mir/Analysis 5 Traft State | Si-Bouy | Return Loss T 1 Active ChiTrace 2 Response 3 Stimulus 4 Mir/Analysis 5 Instr State | est- body | | > 1 1.750000 GHz 48.736 0 -1.8706 0 48-619 pF | | 1 | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D1900V2-5d091_Sep15 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Huawei-SZ (Auden) **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d091 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 21, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-14 (No. EX3-7349_Dec14) | Dec-15 | | DAE4 | SN: 601 | 17-Aug-15 (No. DAE4-601_Aug15) | Aug-16 | | | 1 | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | M.Neles | | Approved by: | Katia Pokovic | Technical Manager | 2011 | | Approved by: | Katja Pokovic | Technical Manager | Jelly- | Issued: September 23, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d091_Sep15 Page 1 of 8 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d091 Sep15 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | JAST System comiguration, as lar as not g | given on page 11 | | |---|------------------------|-------------| | DASY Version | DASY5 | V52.8.8 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and calculations were applied. | The following parameters and calculations were appro- | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.3 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.1 W/kg ± 16.5 % (k=2) | **Body TSL parameters** The following parameters and calculations were applied. | The following parameters and earlessances were approximately | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.6 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.27 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d091_Sep15 ## Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.0 Ω + 5.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.8 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.2 Ω + 6.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.0 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.198 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 26, 2007 |